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Chaoslike behavior in nonchaotic systems at finite computation precision
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The dynamical behavior of a two-dimensional map is investigated numerically. A chaoslike behavior, i.e., a
nonsmooth distribution of the attractor and seemly sensitive dependence of the motion on initial condition is
found as the system state is nonchadlioth Lyapunov exponents are nonposiiivEhe key point for this
strange behavior is that the mode corresponding to the second negative Lyapunov exponent contains positive
local Lyapunov exponent segments. It is argued that this kind of behavior may be typical and easily observed
in practical numerical computations and experiments where small noise is inevitable.
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I. INTRODUCTION =\y(T). Associated with each exponept0,1, 2 ... g,
. ) there are nested subspac#se RY of dimensiong+1— |
It is well known in the study of chaos that Lyapunov ang with property that

exponentgLEs) play an important role in characterizing the
dynamics of chaotic system. In particular, the positive largest
LE is the key feature for describing the sensitive initial- 1
condition dependence of the chaotic motjdr-4]. Recently, Aj(T)=lim = In[(DFY)x v )
negative LEs, which contain some positive local Lyapunov t=e
segments, have attracted more and more attention. For in-
stance, in quasiperiodically forced systems with strange non- it ) ) j
chaotic attractor§SNA), the two trivial largest LEs are zero, [of @ll vje VAV/T=. Notice that forj=2 the subspaceg
and the third LE is negative which, however, plays the cru-2r€ Sets of Lebesgue measure zero, and so for alm?st all
cial role in determining the features of SNA, the importance€ R? the limit in Eq. (2) equals \4(T). Since Of)x
of this point was emphasized in Ref$,6]. The shadowing =(Df)xt~(Df)xt71 R (Df)XO, all of the Lyapunov ex-
problem of chaotic systems was discussed in R@s12. It ponents can be calculated by evaluating the Jacobian of the
was clear that the shadowing of chaotic trajectories may bgnction f along a trajectoryX,}.
broken if the second negative LE of a two-dimensional map These two approaches are regarded to be qualitatively

(suppose the system has a single positivg téhtains local  equivalent without any ambiguity. A small quantitative de-
positive LE. It is interesting to further explore the new char-

acteristic features of the system dynamics brought by such
negative LEs with positive segments of local LE.

In a LE spectrum, the largest LE has been computed mos
frequently. There are two computation methods convention-
ally accepted which are regarded to be equivalent. The firs
method is to compute the divergence rate of two adjacent 005
trajectories of the system, the distance between the two trau (m)
jectories is frequently reset to a constant, which is much o.00]
smaller than the attractor scale and much larger than the
computation error, namely 0.05 4
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where\ (D) is the largest LE of the system|,(D) is the ooz . e 0° o8 "

distance aftenth iteration whileAly(D) is the distance to FIG. 1. a=3.4, ©=0.001x (\5—1)/2. These parameters will
which we resetAl (D) before each iteration and after the pe ysed in all the following figures. Double precisighe compu-
previous iteration. The second one is to work in the tangenfaion error is about the order of 1#) is used in Figs. 1-5. The
space of the dynamic system. Fomalimensional system, |argest LEX,(T) computed according to EG2) vs c. The largest
f: R9—=R9, with the trajectory X,,;=f(X,), n=0,1, LEis zero in a large region for<0.045, and the circle indicates
2, ...,there areq exponents which are customarily ranked the parametec=0.0325 which will be used in all the following
from the largest to the smallesh(T)=A,(T)=--- figures.
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-/\ FIG. 2. ¢=0.0325.(a) The attractor of Egs.
0.4 (3). Nondifferential parts can be observed in the
two branches.(b) The amplification of the
0 02 04 06 08 10 850 0b1 032,028 054 025 marked region of(a). (¢) and (d) The two LEs
’ e ’ ) »027=. ' e : ' N1(T) and\,(T) of the system, computed in Eq.
10 (c) ) (2), plotted vs the average time (c) As t in-
creases, the largest LE;(T) approaches zero.
}H(T;o* e 2,(T) (d) The second LEN,(T) saturates to a finite
“\u\\u g negative value.
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viation may exist between (D) and \,(T) due to the ferent from the systems mentioned in the beginning. How-
choice of the initial distance of the two adjacent trajectoriesever, our system has a common feature as the previous ones
(Alp(D)) in the first method. that the second LE contains positive segments of local LE.
In this paper we consider a two-dimensional map systeme find that in certain range well above the computation
which has one zero and one negative LEs, and it is noncharror the system shows chaoslike behavior and the largest
otic and neither strange. Thus, this system is essentially diftE’'s computed from the above two methods are totally dif-

15

(a) (b)
— .40
= =
E <
= —
= 10 2
o
>
)
= .80
05 . , . : ; . -120 , . . : . :
0 500 1000 1500 2000 0 500 1000 1500 2000
n n
314 4 (c) 314 4

MY T T YT

1.57 IS G ECIEIC 157

A RREE R}
- LAL LD LA

n

FIG. 3. (a) The variation of the length of the first modéﬁ(T), corresponding ta.;(T) in the tangent space. The curve oscillates around
1, confirming\(T)=0. (b) The same a&) with the second modgor \,(T)] is plotted. This mode shrinks to zero eventually, indicating
N\»(T)<0. (¢) The angle of the first modej;ﬁ(T), plotted vsn. (d) The angle of the second modﬁﬁ(T), plotted vsn.
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10” be typically observed in experiments with small and finite
10”1 noise.
~ 10° ; ——
= 191'2_ f —— ll. CHAOSLIKE BEHAVIOR IN A NONCHAOTIC MODEL
0P o aD=10” v Al D)=10" SHOWN BY DOUBLE PRECISION COMPUTATION
10 o Al(D)=10™ - Al (D)=10" ] ] ] )
107" AD)=10" 1 AlL(D)=10" We consider the following two-dimension&D) map:
107 T T J T J T T T J
0 100 200 300 400 500 Xni1=aX,(1—x,)+bcog4,), (33

Opi1=0,+2Tw+CX,. (3b)

This model has been investigated extensively in connection
with SNA study at the zero coupling=0, which corre-
sponds to a periodically forced map or, equivalently, a qua-
siperiodically driven ordinary differential equation. For
0.0675 —T T T — =0 the system has obviously a zero largest LE, and the other
0.0 20x10° 4.0x10° 6.0x10° 8.0x10° 1.0x107 LE may be negative for certain rangeatvith positive local

LE as we can see for all cases of S\&. It is interesting to
investigate the case with nonzero coupling, which, neverthe-
less, has been considered much less so far.

We fix a=3.4, b=0.1, andw=0.001x (\/5—1)/2 and
study the system dynamics for different couplingiumeri-
cally by taking double precision computation which is used
in the absolute majority of current works. With smallthe
system Eq.(3a) can be regarded to be driven adiabatically,
and witha=3.4 andb=0.1 Eq.(33 is in a range of period-2

FIG. 4. (3) The variations of the distances between two adjacenistate and some segments can manifest local positive LE.
trajectories. The distances increase quickly to the maximal value First, we compute the largest LE of the system(T) vs
the values of the initial distance) The largest LEx;(D) com- in Eq. (2), and plot\4(T) vscin Fig. 1 where for smalt we
puted in Eq(1), vst. Alo(D)=10"*2 (c) The angle,(D) defined  finq )\ (T)<0 . In Fig. 2a) we takec=0.0325 correspond-
in (5) plotted vsn. In the peakedflat) parts of(a) the angle is O or ing to zeroX,(T) and plot the asymptotic state in,@)

7 (—m/2 or w/2), which is in the direction of the second mode plane. Two thick segments are found in the two brar;ches of
(first mode in Figs. 3b) and 3d) [Figs. 3a and 3c)]. - . . -

the figure. In Fig. 2o) we amplify the marked part in Fig.

2(a), and breaking of smooth torus is clearly observed. Since
ferent, one[Ny(D)] is definitely positive but the other the largest LE is zero, this feature seems to indicate SNA.
[N4(T)] is zero. It is argued that the positive segments of theéActually, it is not as we will explain in Sec. lll. In Figs(®
local LE of the second negative LE mode and the computaand 2d) we plot the two Lyapunov exponenis (T) and
tion error are responsible for this strange behavior, which cai,(T) vs the average timg respectively, for the state Fig.
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2(a), the plots show, without any ambiguity, zexg(T) and  are reasonable since a0 the first and the second modes
negative\,(T). The Lyapunov exponents are obtained byare exactly along the axig andx axis, respectively, and the
applying the method based on the factorization of a matrixsmall nonzero coupling can induce some small fluctuations
representation of the tangent map into a product of an oref the modes along these directions only.

thogonal matrix Q and an upper triangular matrix R with  All the results in Figs. 1, @), 2(d), and 3 are obtained
positive diagonal elements. Such factorization can beahrough the computation in the tangent space. For under-
achieved by using the Gram-Schmi@@$S) orthogonaliza- standing the nature of the distribution Figbh2we directly
tion procedure or the QR factorization that uses the Housecalculate the evolution of a small difference between two
holder transformatioHQR). The results of two methods are adjacent trajectories of the systéB). Suppose two trajecto-
essentially the samgl3-14. The HQR method, which is ries (x,,6,) and (x;,,6;) are close to each other initially,

used in our c_:omputation, is more computationally efficientineir difference vectoﬂ: has its length and angle as
and stable with regard to roundoff errors than the MGS ap-

proaches. Al(D)= (A 6,(D))?+ (Axn(D))?,
For clearly showing the time evolutions of the two modes (D)= V(A6,(D))"+ (x,(D))
r(M and r(? [corresponding to\;(T) and A,(T), respec- tg(¢n(D))=A6,(D)/Ax,(D),
tively] in the tangent space, we plot in Fig. 3 the variations
of the lengthsAI>%T) and the anglesp>4T) of r{" and Ab0y(D)=6,—06,, AXp(D)=Xy—X;. ©)
0 - L 1,2 12
rn’ vs the iteration timen, whereAl(T) and #7(T) are |4 Eig 4(a) we plotAl,(D) vsn for different initial Al (D).
defined as For eachAlo(D) we find Al ,(D) quickly increasegnote, in
Fig. 4 Al (D) is no longer reset tal (D) after each itera-
1, _ 1,2 2 1,2 2 n
Alnz(T)_ @ O ()™ + (Axy(T))*, tion] to a distanceAl,(D)~0.01, which is nothing but the
12 N N (4)  width of the attractor in the nondifferential segmefsee
tg(dr AT =20, AT)/AXAT). Fig. 2(b)]. For having the expanding rate of Figaj the LE

averaged in a long time perigde., A ;(D)] should be of the

The superscripts 1 and 2 represent the mode intié,T) order 0.1 as we can see in Figh#i which is in a striking

and Ax>(T) are the coordinates of the modg’ andr(?),  contrast to the zero largest LE (T) of Fig. 2c) and zero
respectively. In our computation, we first neglect a transienexpansion rate of the tangent vector in Figa)3
of 10* iterations and then normalize A|(1),2(-|—) An interesting question is how the expansions of Fig) 4

= JA6(T)?+Ax(T)?=1 for both modes for the first com- Can occur i_n a dynamic system of which no expansion exists
putation iteration. In Figs. @) and 3b) the lengths of the in all directions of the tangent space in the average siesese
first and the second modes are plotted, respectively. ThEigs. 4¢), 2(d), 3(a), and 3b)]. For answering this question,
length of the first mode oscillates around 1 all the time, corWe first plot ¢,(D) vs n in Fig. 4(c), where we find that
responding to zero LE. The second mode eventually shrinkgn(D) jumps between two sets of angles 0 — /2 or

to zero, reasonably indicating negative LE. In Fig&)and  7/2. In Figs. 3c) and 3d) we have already shown that
3(d) the angles of the two modes are plotted, it is interesting= 7/2,7/2, and O correspond to the mode directions of
to notice that the first mode fluctuates always along ghe Zzeros(the largestand negative LEs, respectively. Thus, the
axis (say, with anglew/2 or —x/2), while the second one difference vectorAl, jumps between the directions of the
varies along thex axis basically(with angle 0 ors). These two modes. Comparing Fig.(@ with 4(a) we find that the
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FIG. 7. The same as Fig. 3 with the computing error reduced to the order 6f.10

expansion ofAl,(D) in Fig. 4@a) occurs always wherl,,
has anglep,(D)=~0 or , i.e., Whenﬂ)n is in the direction
of the secondnegative LB mode, whileAl,(D) curve be-
comes flat in the region ab,(D)~ — =/2 or 7/2, i.e., in the
direction of the firs{zero LE) mode. Jumps from- 77/2, /2
angle (0,7 angle to 0, = angle (— m/2, =/2 angle in Fig.
4(c) correspond to the turnings from the flggeaked seg-
ments to the peakedat) segments in Fig. @), this explains

why \ (D) is different from\(T) computed in the tangent
space.

In order to understand Whgx_l)n expands in the direction
of the second modé the mode of negative LEwve investi-
gate the local LEs for botix1(T), Ao(T) modes. In Figs.
5(a) and §b) we plot the 10 step local LEs for the first and
the second modes vs the iteration timeespectively. Bym
step local LE we mean

1.0 1
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E 1 f b I FIG. 8. The same as Fig. 5 with the comput-
E‘“ l ‘( ing error reduced to the order of 1%.
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FIG. 9. (a) and(b) The same as Fig.(d with the computing error 10°%. Note the different values aklo(D) in both figures(c) and
(d) The same as Fig.() with the computing error 10°° and with differentAl (D).

pass this unstable time regi¢see the AB segment in Fig.

1
. = —_— m . s
A(T.m.n) mlnH(Df )xn oll © 4(c)] and enter the interval with negative local LEf,,Z)

shrinks and so doesl,, this yields the part BC in Fig.(4)

wherer () dominates inAT,,, andAl,(D) maintains nearly a
constant value. The similar process repeats in each circle
during the evolution of the system, and yield the result of
Fig. 4.
In summary, we find a chaoslike behavisee the seemly

strange attractor in Fig.(B) and the positive\,(D)] in a

onchaotic systerfix; o(T)=<0]. In the next section it will

e clear that this chaoslike behavior is caused by the com-
putation precision and the second local positive LE.

where @f);‘n=(Df)Xn+mfl-(Df)xn+m72~ . -(Df)xn, and all
the notations have the same meanings as in(Bqgexcept
the infinite average time from=1 to t—« in (2) is re-
placed by a finite time average fromto n+m—1.

For computing them step local LE we again neglect the
first 10" iterations for avoiding the transient effect. The first
local LE \¢(T, m=10) in Figs. %a) is approximately zero
with small fluctuations around. Large positive and negativ
values can appear in some segments of Figls) ®r the
second local LB\ ,(T, m=10) though the long time average
of the second LB\ ,(T) is definitely negative, and the posi-
tive segments of the second local D&(T, m=10) are in . NUMERICAL RESULTS
accordance with the regions in FigatwhereAl,(D) rap- BY HIGH-PRECISION COMPUTATION
e o o, s JEDSTAETES 21 1 oder t0 horoughy understand the stange behavi
X, AT, M) of Fig. 5 and the jumping behavior of Fig(cl. in Sec. I[, we conduct .numerlcal S|mulgt|on by applying

. . : . BN high-precision computation, namely, using the Maple VI

Given any two adjacent trajectories,(, 6,) and ;,,6,), algorithm
the distance vector between therl,, must contain both In Fig. 6 we do exactly the same as Fig. 2 except using
r(D andr® modes. As the trajectories enter the segment§omputation precision 10° (note, the double precision is

— 16 ; ; ; ;
with large positive local second LRI, increases exponen- abou_t 10 )_' It is n(_)tlce_d thaF the size of t_he_W|d_th OT the
all duci .. fEi dAT. takes th nondifferential part in Fig. 2 is greatly shrinking in Fig. 6
tially, producing a raising part of Fig.(#), andAl, takes the 01 the order 102 to the order 10 [invisible in Figs.
direction ofrE,Z) as shown in Fig. &). As the trajectories 6(a) and Gb)], the difference between these orders is pre-
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d -60
] ~o AlO(D)_m FIG. 11. \4(D) plotted vsAly(D). The computing error is of
104 I order 10 .
o \]\Q\% 75 60 ; i i
= %Dooo%% =10 and 10 *°, respectively. In Fig. &) ¢,(D) jumps
' among the directions of the first{7/2) and the second (0,

+ ) modes, corresponding to the flat and peaked segments
of Fig. 9a), respectively , while in Fig. @) ¢,(D) keeps in

the direction ¢ 7/2) of the first modg zero\1(T) modd,

and this explains the nearly constait,(D) in Fig. 9b).

With the computation precision 16° we can calculate
N1(D) of Eqg. (1) by varyingAly(D) in a large scale. In Fig.
10(a) we takeAly(D)=10 "® which is much smaller than

FIG. 10. (a) and(b) The same as Fig.(8) with Alo(D) replaced  the width of the nondifferential region in Fig(l® and plot
by 10" 7® and 10 ®, respectively. The computing error is of order A;(D) vs the average timg \;(D) approaches to a finite
10 %0, positive valuglabout 0.052 obviously in agreement with the

cisely the same as the difference of the orders for the c:orre‘farialtionAIn in Figs. 9@ and 9c). In Fig. 1db) we take

160 i :
sponding computation precisions. This shrinking shows that*|0(P)=10"", which is considerably larger than the corre-

the strange behavior in Fig(1 is caused by the computa- SPONding region width, and the,(D) approaches zero as
tion errors amplified by the local positive LE of the secondincreases, this is expected from the evolutiol\df in Figs.
mode. However, the two LEs;(T) andX\,(T) in Figs. 6c)  9(b) and 9d). In Fig. 11A,(D) is plotted againstAl (D),
and &d) are not changed from Figs(@ and 2d), that indi-  positive A ;(D) is obviously observed in the regiahl 4(D)
cates the results computed in the tangent space are not ag-10" " and zeroh (D) is identified forAly(D)>10" %6,
parently affected by different computation precisions. This
conclusion is further confirmed by Figs. 7 and 8 where we do
exactly the same as Figs. 3 and 5 by replacing the double

¢
Fi

107 —— T
10° 10

10°

IV. CONCLUSION

precision by the precision of 16° there is nothing essen- | conclusion a chaoslike behavior in nonchaotic systems
tially changed in Figs. 7 and 8 from Figs. 3 and 5, respectan be observed for a certain range of detection if some local
tively. Lyapunov exponent of a negative LE is positive. By noncha-

In Figs. 9a) and 9b) we do the same as Fig(a} with  otic system we mean that all the LEs computed in the tangent
10~ % precision applied. The evolutions of variods (D)  space[Eq. (2)] are nonpositive; by chaoslike behavior we
sequences depend on their initial distantéy(D). For  mean the attractor contains nondifferential parts and the mo-
Alg(D) considerably smaller than 16° [Fig. 9(a)] we find  tion is sensitive to the initial condition. The range where this
the same behavior as Fig(a# except the maximal value of strange behavior appears depends on the numerical compu-
Al,(D) can go up only to 10%, which is nothing but the tation error and the expanding rate of the local positive LE.
width of the nondifferential region of FIg(B) (invisible), More Speciﬁca”y, this range is between *0and 1 ¢«
and is 10* larger than the computation precision Fig. 4@  where 10 “ is the order of computation error andAlB the
this ratio is also about . However, for Alo(D) much  expansion rate in a positive local Lyapunov exponent seg-
larger than 10°%, in Fig. 9b) Al (D) is practically un-  ment of the corresponding mode of negative LE. Well above
changed after the transient, and no sensitivity of the systenhis range the attractor is smooth and the motion is regular.
motion to the initial value can be observed, this is well in A practically interesting point is that the above range for
accordance with the zero largest LE of Figc)6In Figs. 9¢)  chaoslike behavior can be easily observed in numerical com-
and 9d) we plot the angleg,(D) of Al, for Aly(D) putations or in experiments if the expansion rate is large as
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B~ a. For instance, in our model we haye~14, and then \;(D) value. However, we still have positive (D) in Fig.

this “chaotic behavior” becomes inevitable when the double1((a), the same behavior can be seen in Fidp) 4nd Fig. 11
precisiona~16, which is extensively applied in the current for Al,(D)<10 °. The intuitive picture for the positivity of
n.um?ntr_;al works, is u_se(;ir.] In order to m?]ke thte nudmerlctag\l(D) is the following: suppose in our casg’ andr(? are
simuiation convincing In these cases we have fo reduce I']t‘i-"1e two vector modes, corresponding to the DE$T) =0,
computation errofincreasea). However, if the same prob- _ = y _
lem (@~ ) occurs in experiments with noise of 10inten-  A»(T)<0, respectively. The lengthr{"|=AI}(T) practi-
sity, the chaoslike behavior in nonchaotic systems shown IRally maintains a constant value whi|e§12)|=A|ﬁ(T) ex-

Sec. Il becc;mes ine\(itablle _anc_if_typical_in relzalité/. o pands in the time interval when local LE,(T) is positive
A point of conceptional significance is related to the com-o g gprinks when local LE,(T) is negative. For long time

putation of the largest LE. It is found that the LEs Compmedaveragafslrl](T) is a constant value WhiIAIﬁ(T) contracts to

in the tangent spade\1(T) in Eqg. (2)] are not sensitive to . . :
the computation precision. However, the largest LE, comZ&"0: When we compute,(D) in Eq. (1) with Alo(D) being

puted in Eq.(1), \,(D), based on the distance of adjacent! the region 10“<Aly(D)<10°", we can findAl, takes
trajectories, sensitively depends on the choice of the distanae) direction whenAl?(T) shrinks and takes!? direction
Alg(D), if some negative LE mode has positive local LE whenAI2(T) expands, i.e.AT, has an intention to take the
segment. Correch;(D) [i.e., N1(D)=Ay(T)] can be ob- girection of the most expandingpr say, least contractifg
tained only if Alo(D) much smaller than the attractor size \ode. that produces positivie,(D) while \;(T)=0. For
and well above the range 40°. So far in applying Eq(1) - having\(D)>\4(T), it is important that the second nega-
only the conditionAlo(D)<1 (suppose the attractor size is tiye ||E mode has positive local LE. This inconsistence
of order 1) has been required for guaranteeing the validity ofyouid not appear if the local positive LE appears in the first
linearization. Now we find thaAlo(D) should be restricted zero mode. For instance, if we neglect the coupling in Eq.
by a lower threshold if some negative LE modes have posit3) ¢=q, the \,(D) computed in Eq.(1) will never be
tive local LE such asAly(D)>10°"“. If B is large this positive [we will have A;(D)=\y(T)=0 or \,(D)
lower limit may be up to the order of the trajectory size, then:)\z(T)<0’ depending on the length order af,(D)] for

the approach of Eq(1) fails. - arbitrary Alo(D)>10"* althoughg is still very large in this
As Alo(D) in Eg. (1) is in between 10* and 16~ we uncoupled case.

can obtain positive. (D) when\ 1(T)=0, corresponding to
the chaoslike behavior in a nonchaotic system. For instance,
we takeAly(D)=10 "®in Fig. 10a), which is much larger
than the computing error and much smaller than the attractor
size. According to the conventional point of view, in this  This research is supported by the National Natural Sci-
case thex;(D) in (1) should be practically the same as ence Foundation of China, the Nonlinear Science Project of
A 1(T) in (2), since linearization around the trajectory is well China, and the Foundation of Doctoral training of Educa-
satisfied and the computing error is too small to affect thdional Bureau of China.
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