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Chaoslike behavior in nonchaotic systems at finite computation precision
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The dynamical behavior of a two-dimensional map is investigated numerically. A chaoslike behavior, i.e., a
nonsmooth distribution of the attractor and seemly sensitive dependence of the motion on initial condition is
found as the system state is nonchaotic~both Lyapunov exponents are nonpositive!. The key point for this
strange behavior is that the mode corresponding to the second negative Lyapunov exponent contains positive
local Lyapunov exponent segments. It is argued that this kind of behavior may be typical and easily observed
in practical numerical computations and experiments where small noise is inevitable.
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I. INTRODUCTION

It is well known in the study of chaos that Lyapuno
exponents~LEs! play an important role in characterizing th
dynamics of chaotic system. In particular, the positive larg
LE is the key feature for describing the sensitive initia
condition dependence of the chaotic motion@1–4#. Recently,
negative LEs, which contain some positive local Lyapun
segments, have attracted more and more attention. Fo
stance, in quasiperiodically forced systems with strange n
chaotic attractors~SNA!, the two trivial largest LEs are zero
and the third LE is negative which, however, plays the c
cial role in determining the features of SNA, the importan
of this point was emphasized in Refs.@5,6#. The shadowing
problem of chaotic systems was discussed in Refs.@7–12#. It
was clear that the shadowing of chaotic trajectories may
broken if the second negative LE of a two-dimensional m
~suppose the system has a single positive LE! contains local
positive LE. It is interesting to further explore the new cha
acteristic features of the system dynamics brought by s
negative LEs with positive segments of local LE.

In a LE spectrum, the largest LE has been computed m
frequently. There are two computation methods conventi
ally accepted which are regarded to be equivalent. The
method is to compute the divergence rate of two adjac
trajectories of the system, the distance between the two
jectories is frequently reset to a constant, which is mu
smaller than the attractor scale and much larger than
computation error, namely

l1~D !5 lim
t→`

1

t (
n51

t

ln D l n~D !2 ln D l 0~D !, ~1!

wherel1(D) is the largest LE of the system,D l n(D) is the
distance afternth iteration whileD l 0(D) is the distance to
which we resetD l n(D) before each iteration and after th
previous iteration. The second one is to work in the tang
space of the dynamic system. For aq-dimensional system
f : Rq→Rq, with the trajectory Xn115 f (Xn), n50,1,
2, . . . , there areq exponents which are customarily ranke
from the largest to the smallestl1(T)>l2(T)>•••
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>lq(T). Associated with each exponentj 50,1, 2, . . . ,q,
there are nested subspacesVjPRq of dimensionq112 j
and with property that

l j~T!5 lim
t→`

1

t
lni~D f t!X0

•v j i ~2!

for all v jPVj\Vj 11. Notice that forj >2 the subspacesVj

are sets of Lebesgue measure zero, and so for almostv
PRq the limit in Eq. ~2! equals l1(T). Since (D f )X0

t

5(D f )Xt
•(D f )Xt21

• ••• • (D f )X0
, all of the Lyapunov ex-

ponents can be calculated by evaluating the Jacobian o
function f along a trajectory$Xt%.

These two approaches are regarded to be qualitati
equivalent without any ambiguity. A small quantitative d

FIG. 1. a53.4, v50.0013(A521)/2. These parameters wil
be used in all the following figures. Double precision~the compu-
tation error is about the order of 10216) is used in Figs. 1–5. The
largest LEl1(T) computed according to Eq.~2! vs c. The largest
LE is zero in a large region forc,0.045, and the circle indicate
the parameterc50.0325 which will be used in all the following
figures.
©2001 The American Physical Society10-1



e

.

.

SHI, HE, KANG, FU, AND HU PHYSICAL REVIEW E63 046310
FIG. 2. c50.0325. ~a! The attractor of Eqs.
~3!. Nondifferential parts can be observed in th
two branches. ~b! The amplification of the
marked region of~a!. ~c! and ~d! The two LEs
l1(T) andl2(T) of the system, computed in Eq
~2!, plotted vs the average timet. ~c! As t in-
creases, the largest LEl1(T) approaches zero
~d! The second LEl2(T) saturates to a finite
negative value.
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viation may exist betweenl1(D) and l1(T) due to the
choice of the initial distance of the two adjacent trajector
„D l 0(D)… in the first method.

In this paper we consider a two-dimensional map syst
which has one zero and one negative LEs, and it is nonc
otic and neither strange. Thus, this system is essentially
04631
s

,
a-
if-

ferent from the systems mentioned in the beginning. Ho
ever, our system has a common feature as the previous
that the second LE contains positive segments of local
We find that in certain range well above the computat
error the system shows chaoslike behavior and the lar
LE’s computed from the above two methods are totally d
nd
ng
FIG. 3. ~a! The variation of the length of the first modeD l n
1(T), corresponding tol1(T) in the tangent space. The curve oscillates arou

1, confirmingl1(T)50. ~b! The same as~a! with the second mode@for l2(T)] is plotted. This mode shrinks to zero eventually, indicati
l2(T),0. ~c! The angle of the first mode,fn

1(T), plotted vsn. ~d! The angle of the second mode,fn
2(T), plotted vsn.
0-2
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CHAOSLIKE BEHAVIOR IN NONCHAOTIC SYSTEMS AT . . . PHYSICAL REVIEW E 63 046310
ferent, one @l1(D)# is definitely positive but the othe
@l1(T)# is zero. It is argued that the positive segments of
local LE of the second negative LE mode and the compu
tion error are responsible for this strange behavior, which

FIG. 4. ~a! The variations of the distances between two adjac
trajectories. The distances increase quickly to the maximal va
about the width of the nondifferential part of Fig. 2~b!, disregarding
the values of the initial distances.~b! The largest LEl1(D) com-
puted in Eq.~1!, vs t. D l 0(D)510212. ~c! The anglefn(D) defined
in ~5! plotted vsn. In the peaked~flat! parts of~a! the angle is 0 or
p (2p/2 or p/2), which is in the direction of the second mod
~first mode! in Figs. 3~b! and 3~d! @Figs. 3~a! and 3~c!#.
04631
e
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be typically observed in experiments with small and fin
noise.

II. CHAOSLIKE BEHAVIOR IN A NONCHAOTIC MODEL
SHOWN BY DOUBLE PRECISION COMPUTATION

We consider the following two-dimensional~2D! map:

xn115axn~12xn!1b cos~un!, ~3a!

un115un12pv1cxn . ~3b!

This model has been investigated extensively in connec
with SNA study at the zero couplingc50, which corre-
sponds to a periodically forced map or, equivalently, a q
siperiodically driven ordinary differential equation. Forc
50 the system has obviously a zero largest LE, and the o
LE may be negative for certain range ofa with positive local
LE as we can see for all cases of SNA@5#. It is interesting to
investigate the case with nonzero coupling, which, nevert
less, has been considered much less so far.

We fix a53.4, b50.1, andv50.0013(A521)/2 and
study the system dynamics for different couplingc numeri-
cally by taking double precision computation which is us
in the absolute majority of current works. With smallv the
system Eq.~3a! can be regarded to be driven adiabatical
and witha53.4 andb50.1 Eq.~3a! is in a range of period-2
state and some segments can manifest local positive LE

First, we compute the largest LE of the system,l1(T) vs
c by taking the standard tangent space computation appro
in Eq. ~2!, and plotl1(T) vs c in Fig. 1 where for smallc we
find l1(T)<0 . In Fig. 2~a! we takec50.0325 correspond-
ing to zero l1(T) and plot the asymptotic state in (x,u)
plane. Two thick segments are found in the two branche
the figure. In Fig. 2~b! we amplify the marked part in Fig
2~a!, and breaking of smooth torus is clearly observed. Si
the largest LE is zero, this feature seems to indicate SN
Actually, it is not as we will explain in Sec. III. In Figs. 2~c!
and 2~d! we plot the two Lyapunov exponentsl1(T) and
l2(T) vs the average timet, respectively, for the state Fig
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FIG. 5. Ten-step local LE for the first@l1(T,
m510) ~a!# and second@l2(T,m510) ~b!#
modes, respectively. The local LE for the fir
mode is about zero stably while that for th
second mode varies from large positive to de
negative values. The existence of positive loc
LE for the second mode is the key point for th
sensitive dependence of initial conditions
Fig. 4.
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FIG. 6. The same as Fig. 2 with the compu
ing error reduced to the order of 10280.
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2~a!, the plots show, without any ambiguity, zerol1(T) and
negativel2(T). The Lyapunov exponents are obtained
applying the method based on the factorization of a ma
representation of the tangent map into a product of an
thogonal matrix Q and an upper triangular matrix R w
positive diagonal elements. Such factorization can
achieved by using the Gram–Schmidt~GS! orthogonaliza-
tion procedure or the QR factorization that uses the Hou
holder transformation~HQR!. The results of two methods ar
essentially the same@13–16#. The HQR method, which is
used in our computation, is more computationally efficie
and stable with regard to roundoff errors than the MGS
proaches.

For clearly showing the time evolutions of the two mod

r n
(1)W and r n

(2)W @corresponding tol1(T) and l2(T), respec-
tively# in the tangent space, we plot in Fig. 3 the variatio

of the lengthsD l n
1,2(T) and the anglesfn

1,2(T) of r n
(1)W and

r n
(2)W vs the iteration timen, whereD l n

1,2(T) andfn
1,2(T) are

defined as

D l n
1,2~T!5A„Dun

1,2~T!…21„Dxn
1,2~T!…2,

~4!
tg„fn

1,2~T!…5Dun
1,2~T!/Dxn

1,2~T!.

The superscripts 1 and 2 represent the mode index,Dun
1,2(T)

andDxn
1,2(T) are the coordinates of the moder n

(1)W and r n
(2)W ,

respectively. In our computation, we first neglect a transi
of 104 iterations and then normalize D l 0

1,2(T)
5ADu(T)21Dx(T)251 for both modes for the first com
putation iteration. In Figs. 3~a! and 3~b! the lengths of the
first and the second modes are plotted, respectively.
length of the first mode oscillates around 1 all the time, c
responding to zero LE. The second mode eventually shr
to zero, reasonably indicating negative LE. In Figs. 3~c! and
3~d! the angles of the two modes are plotted, it is interest
to notice that the first mode fluctuates always along thu
axis ~say, with anglep/2 or 2p/2), while the second one
varies along thex axis basically~with angle 0 orp). These
04631
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are reasonable since atc50 the first and the second mode
are exactly along the axisu andx axis, respectively, and the
small nonzero couplingc can induce some small fluctuation
of the modes along these directions only.

All the results in Figs. 1, 2~c!, 2~d!, and 3 are obtained
through the computation in the tangent space. For und
standing the nature of the distribution Fig. 2~b! we directly
calculate the evolution of a small difference between t
adjacent trajectories of the system~3!. Suppose two trajecto
ries (xn ,un) and (xn8 ,un8) are close to each other initially

their difference vectorD l n
W has its length and angle as

D l n~D !5A„Dun~D !…21„Dxn~D !…2,

tg„fn~D !…5Dun~D !/Dxn~D !,

Dun~D !5un2un
8 , Dxn~D !5xn2xn

8 . ~5!

In Fig. 4~a! we plotD l n(D) vs n for different initial D l 0(D).
For eachD l 0(D) we findD l n(D) quickly increases@note, in
Fig. 4 D l n(D) is no longer reset toD l 0(D) after each itera-
tion# to a distanceD l n(D)'0.01, which is nothing but the
width of the attractor in the nondifferential segments@see
Fig. 2~b!#. For having the expanding rate of Fig. 4~a!, the LE
averaged in a long time period@i.e., l1(D)] should be of the
order 0.1 as we can see in Fig. 4~b!, which is in a striking
contrast to the zero largest LEl1(T) of Fig. 2~c! and zero
expansion rate of the tangent vector in Fig. 3~a!.

An interesting question is how the expansions of Fig. 4~a!
can occur in a dynamic system of which no expansion ex
in all directions of the tangent space in the average sense@see
Figs. 2~c!, 2~d!, 3~a!, and 3~b!#. For answering this question
we first plot fn(D) vs n in Fig. 4~c!, where we find that
fn(D) jumps between two sets of angles 0 orp
2p/2 or
p/2. In Figs. 3~c! and 3~d! we have already shown tha
2p/2,p/2, and 0,p correspond to the mode directions
zeros~the largest! and negative LEs, respectively. Thus, th
difference vectorD l n

W jumps between the directions of th
two modes. Comparing Fig. 4~c! with 4~a! we find that the
0-4
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FIG. 7. The same as Fig. 3 with the computing error reduced to the order of 10280.
t

d

expansion ofD l n(D) in Fig. 4~a! occurs always whenD l n
W

has anglefn(D)'0 or p, i.e., whenD l n
W is in the direction

of the second~negative LE! mode, whileD l n(D) curve be-
comes flat in the region offn(D)'2p/2 or p/2, i.e., in the
direction of the first~zero LE! mode. Jumps from2p/2, p/2
angle (0,p angle! to 0, p angle (2p/2, p/2 angle! in Fig.
4~c! correspond to the turnings from the flat~peaked! seg-
ments to the peaked~flat! segments in Fig. 4~a!, this explains
04631
why l1(D) is different froml1(T) computed in the tangen
space.

In order to understand whyD l n
W expands in the direction

of the second mode~ the mode of negative LE! we investi-
gate the local LEs for bothl1(T), l2(T) modes. In Figs.
5~a! and 5~b! we plot the 10 step local LEs for the first an
the second modes vs the iteration timen, respectively. Bym
step local LE we mean
t-
FIG. 8. The same as Fig. 5 with the compu
ing error reduced to the order of 10280.
0-5
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FIG. 9. ~a! and ~b! The same as Fig. 4~a! with the computing error 10280. Note the different values ofD l 0(D) in both figures.~c! and
~d! The same as Fig. 4~c! with the computing error 10280 and with differentD l 0(D).
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l j~T,m,n!5
1

m
lni~D f m!Xn

•vi , ~6!

where (D f )Xn

m 5(D f )Xn1m21
•(D f )Xn1m22

•••(D f )Xn
, and all

the notations have the same meanings as in Eq.~2! except
the infinite average time fromn51 to t→` in ~2! is re-
placed by a finite time average fromn to n1m21.

For computing them step local LE we again neglect th
first 104 iterations for avoiding the transient effect. The fir
local LE l1(T, m510) in Figs. 5~a! is approximately zero
with small fluctuations around. Large positive and negat
values can appear in some segments of Figs. 5~b! for the
second local LEl2(T, m510) though the long time averag
of the second LEl2(T) is definitely negative, and the pos
tive segments of the second local LEl2(T, m510) are in
accordance with the regions in Fig. 4~a! whereD l n(D) rap-
idly raises. Now the sensitive initial value dependence
Fig. 4 can be well understood, based on the two local L
l1,2(T, m) of Fig. 5 and the jumping behavior of Fig. 4~c!.

Given any two adjacent trajectories (xn ,un) and (xn8 ,un8),

the distance vector between them,D l n
W , must contain both

r n
(1)W and r n

(2)W modes. As the trajectories enter the segme

with large positive local second LE,D l n
W increases exponen

tially, producing a raising part of Fig. 4~a!, andD l n
W takes the

direction of r n
(2)W as shown in Fig. 4~c!. As the trajectories
04631
e
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ts

pass this unstable time region@see the AB segment in Fig

4~c!# and enter the interval with negative local LE,r n
(2)W

shrinks and so doesD l n
W , this yields the part BC in Fig. 4~c!

wherer n
(1)W dominates inD l n

W , andD l n(D) maintains nearly a
constant value. The similar process repeats in each c
during the evolution of the system, and yield the result
Fig. 4.

In summary, we find a chaoslike behavior@see the seemly
strange attractor in Fig. 2~b! and the positivel1(D)] in a
nonchaotic system@l1,2(T)<0#. In the next section it will
be clear that this chaoslike behavior is caused by the c
putation precision and the second local positive LE.

III. NUMERICAL RESULTS
BY HIGH-PRECISION COMPUTATION

In order to thoroughly understand the strange behav
in Sec. II, we conduct numerical simulation by applyin
high-precision computation, namely, using the Maple
algorithm.

In Fig. 6 we do exactly the same as Fig. 2 except us
computation precision 10280 ~note, the double precision i
about 10216). It is noticed that the size of the width of th
nondifferential part in Fig. 2 is greatly shrinking in Fig.
from the order 1022 to the order 10266 @invisible in Figs.
6~a! and 6~b!#, the difference between these orders is p
0-6



rr
h
-
nd

t
hi
d
b

-
ec

f

te
in

,
ents

e-

ms
cal
a-
ent
e

mo-
is
pu-

E.

eg-
ve

lar.
for
om-

as

er

CHAOSLIKE BEHAVIOR IN NONCHAOTIC SYSTEMS AT . . . PHYSICAL REVIEW E 63 046310
cisely the same as the difference of the orders for the co
sponding computation precisions. This shrinking shows t
the strange behavior in Fig. 2~b! is caused by the computa
tion errors amplified by the local positive LE of the seco
mode. However, the two LEsl1(T) andl2(T) in Figs. 6~c!
and 6~d! are not changed from Figs. 2~c! and 2~d!, that indi-
cates the results computed in the tangent space are no
parently affected by different computation precisions. T
conclusion is further confirmed by Figs. 7 and 8 where we
exactly the same as Figs. 3 and 5 by replacing the dou
precision by the precision of 10280, there is nothing essen
tially changed in Figs. 7 and 8 from Figs. 3 and 5, resp
tively.

In Figs. 9~a! and 9~b! we do the same as Fig. 4~a! with
10280 precision applied. The evolutions of variousD l n(D)
sequences depend on their initial distanceD l 0(D). For
D l 0(D) considerably smaller than 10266 @Fig. 9~a!# we find
the same behavior as Fig. 4~a! except the maximal value o
D l n(D) can go up only to 10266, which is nothing but the
width of the nondifferential region of Fig. 6~b! ~invisible!,
and is 1014 larger than the computation precision@in Fig. 4~a!
this ratio is also about 1014]. However, for D l 0(D) much
larger than 10266, in Fig. 9~b! D l n(D) is practically un-
changed after the transient, and no sensitivity of the sys
motion to the initial value can be observed, this is well
accordance with the zero largest LE of Fig. 6~c!. In Figs. 9~c!

and 9~d! we plot the anglefn(D) of D l n
W for D l 0(D)

FIG. 10. ~a! and~b! The same as Fig. 4~b! with D l 0(D) replaced
by 10275 and 10260, respectively. The computing error is of ord
10280.
04631
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510275 and 10260, respectively. In Fig. 9~c! fn(D) jumps
among the directions of the first (6p/2) and the second (0
6p) modes, corresponding to the flat and peaked segm
of Fig. 9~a!, respectively , while in Fig. 9~d! fn(D) keeps in
the direction (6p/2) of the first mode@zero l1(T) mode#,
and this explains the nearly constantD l n(D) in Fig. 9~b!.

With the computation precision 10280, we can calculate
l1(D) of Eq. ~1! by varyingD l 0(D) in a large scale. In Fig.
10~a! we takeD l 0(D)510275 which is much smaller than
the width of the nondifferential region in Fig. 6~b! and plot
l1(D) vs the average timet, l1(D) approaches to a finite
positive value~about 0.052! obviously in agreement with the
variation D lW n in Figs. 9~a! and 9~c!. In Fig. 10~b! we take
D l 0(D)510260, which is considerably larger than the corr
sponding region width, and thel1(D) approaches zero ast

increases, this is expected from the evolution ofD l n
W in Figs.

9~b! and 9~d!. In Fig. 11 l1(D) is plotted againstD l 0(D),
positivel1(D) is obviously observed in the regionD l 0(D)
,10270 and zerol1(D) is identified forD l 0(D).10266.

IV. CONCLUSION

In conclusion a chaoslike behavior in nonchaotic syste
can be observed for a certain range of detection if some lo
Lyapunov exponent of a negative LE is positive. By nonch
otic system we mean that all the LEs computed in the tang
space@Eq. ~2!# are nonpositive; by chaoslike behavior w
mean the attractor contains nondifferential parts and the
tion is sensitive to the initial condition. The range where th
strange behavior appears depends on the numerical com
tation error and the expanding rate of the local positive L
More specifically, this range is between 102a and 10b2a

where 102a is the order of computation error and 10b is the
expansion rate in a positive local Lyapunov exponent s
ment of the corresponding mode of negative LE. Well abo
this range the attractor is smooth and the motion is regu

A practically interesting point is that the above range
chaoslike behavior can be easily observed in numerical c
putations or in experiments if the expansion rate is large

FIG. 11. l1(D) plotted vsD l 0(D). The computing error is of
order 10280.
0-7
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b'a. For instance, in our model we haveb'14, and then
this ‘‘chaotic behavior’’ becomes inevitable when the doub
precisiona'16, which is extensively applied in the curre
numerical works, is used. In order to make the numer
simulation convincing in these cases we have to reduce
computation error~increasea). However, if the same prob
lem (a'b) occurs in experiments with noise of 102a inten-
sity, the chaoslike behavior in nonchaotic systems show
Sec. II becomes inevitable and typical in reality.

A point of conceptional significance is related to the co
putation of the largest LE. It is found that the LEs comput
in the tangent space@l1(T) in Eq. ~2!# are not sensitive to
the computation precision. However, the largest LE, co
puted in Eq.~1!, l1(D), based on the distance of adjace
trajectories, sensitively depends on the choice of the dista
D l 0(D), if some negative LE mode has positive local L
segment. Correctl1(D) @i.e., l1(D)5l1(T)] can be ob-
tained only if D l 0(D) much smaller than the attractor siz
and well above the range 10b2a. So far in applying Eq.~1!
only the conditionD l 0(D)!1 ~suppose the attractor size
of order 1) has been required for guaranteeing the validity
linearization. Now we find thatD l 0(D) should be restricted
by a lower threshold if some negative LE modes have p
tive local LE such asD l 0(D).10b2a. If b is large this
lower limit may be up to the order of the trajectory size, th
the approach of Eq.~1! fails.

As D l 0(D) in Eq. ~1! is in between 102a and 10b2a we
can obtain positivel1(D) whenl1(T)50, corresponding to
the chaoslike behavior in a nonchaotic system. For insta
we takeD l 0(D)510275 in Fig. 10~a!, which is much larger
than the computing error and much smaller than the attra
size. According to the conventional point of view, in th
case thel1(D) in ~1! should be practically the same a
l1(T) in ~2!, since linearization around the trajectory is we
satisfied and the computing error is too small to affect
-

ev

.

ys
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l1(D) value. However, we still have positivel1(D) in Fig.
10~a!, the same behavior can be seen in Fig. 4~b! and Fig. 11
for D l 0(D),10270. The intuitive picture for the positivity of

l1(D) is the following: suppose in our caser n
(1)W andr n

(2)W are
the two vector modes, corresponding to the LEsl1(T)50,

l2(T),0, respectively. The lengthur n
(1)W u5D l n

1(T) practi-

cally maintains a constant value whileur n
(2)W u5D l n

2(T) ex-
pands in the time interval when local LEl2(T) is positive
and shrinks when local LEl2(T) is negative. For long time
averageD l n

1(T) is a constant value whileD l n
2(T) contracts to

zero. When we computel1(D) in Eq. ~1! with D l 0(D) being
in the region 102a,D l 0(D),10b2a, we can findD l n

W takes

r n
(1)W direction whenD l n

2(T) shrinks and takesr n
(2)W direction

whenD l n
2(T) expands, i.e.,D l n

W has an intention to take th
direction of the most expanding~or say, least contracting!
mode, that produces positivel1(D) while l1(T)50. For
havingl1(D).l1(T), it is important that the second nega
tive LE mode has positive local LE. This inconsisten
would not appear if the local positive LE appears in the fi
zero mode. For instance, if we neglect the coupling in E
~3!, c50, the l1(D) computed in Eq.~1! will never be
positive @we will have l1(D)5l1(T)50 or l1(D)
5l2(T),0, depending on the length order ofD l 0(D)] for
arbitraryD l 0(D).102a althoughb is still very large in this
uncoupled case.
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